The challenge of archiving and preserving remotely sensed data
نویسنده
چکیده
Few would question the need to archive the scientific and technical (S&T) data generated by researchers. At a minimum, the data are needed for change analysis. Likewise, most people would value efforts to ensure the preservation of the archived S&T data. Future generations will use analysis techniques not even considered today. Until recently, archiving and preserving these data were usually accomplished within existing infrastructures and budgets. As the volume of archived data increases, however, organizations charged with archiving S&T data will be increasingly challenged (U.S. General Accounting Office, 2002). The U.S. Geological Survey has had experience in this area and has developed strategies to deal with the mountain of land remote sensing data currently being managed and the tidal wave of expected new data. The Agency has dealt with archiving issues, such as selection criteria, purging, advisory panels, and data access, and has met with preservation challenges involving photographic and digital media. That experience has allowed the USGS to develop management approaches, which this paper outlines.
منابع مشابه
A Comparative Study of SVM and RF Methods for Classification of Alteration Zones Using Remotely Sensed Data
Identification and mapping of the significant alterations are the main objectives of the exploration geochemical surveys. The field study is time-consuming and costly to produce the classified maps. Therefore, the processing of remotely sensed data, which provide timely and multi-band (multi-layer) data, can be substituted for the field study. In this study, the ASTER imagery is used for altera...
متن کاملSpatiotemporal Estimation of PM2.5 Concentration Using Remotely Sensed Data, Machine Learning, and Optimization Algorithms
PM 2.5 (particles <2.5 μm in aerodynamic diameter) can be measured by ground station data in urban areas, but the number of these stations and their geographical coverage is limited. Therefore, these data are not adequate for calculating concentrations of Pm2.5 over a large urban area. This study aims to use Aerosol Optical Depth (AOD) satellite images and meteorological data from 2014 to 2017 ...
متن کاملSpatiotemporal analysis of remotely sensed Landsat time series data for monitoring 32 years of urbanization
The world is witnessing a dramatic shift of settlement pattern from rural to urban population, particularly in developing countries. The rapid Addis Ababa urbanization reflects this global phenomenon and the subsequent socio-economic and environmental impacts, are causing massive public uproar and political instability. The objective of this study was to use remotely sensed Landsat data to iden...
متن کاملCoastal water quality assessment based on the remotely sensed water quality index using time series of satellite images
This study was conducted with the aim of providing a remotely sensed water quality index in Assaluyeh port using remote sensing technology. so, according to the region conditions, studying of scientific resources and access to satellite data, the parameters of heavymetals, dissolved ions, SST, chlorophyll-a and pH were selected. Then, by reviewing sources, the product MYD091km, MYD021km, MOD02...
متن کاملHistorical Remotely Sensed Sea Surface Temperature Data for Prediction of Coral Bleaching Event in Kish Island, the Persian Gulf
The capability of Degree Heating Weeks index (DHWs) was examined for prediction of bleaching events in the coral reef communities of the Kish Island located in the north of the Persian Gulf. In doing so, weekly Sea Surface Temperature (SST) values (in 1°×1° spatial resolution) prepared by National Oceanic and Atmospheric Administration (NOAA), coupled with documented bleaching events, such...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Data Science Journal
دوره 2 شماره
صفحات -
تاریخ انتشار 2003